Advanced Studies in Contemporary Mathematics Www.jangjeon.or.kr
30 (2020), No. 4, pp. 529 - 538 http://dx.doi.org/10.17777/ascm2020.30.4.529

SOME RELATIONSHIPS BETWEEN THE NUMBERS OF LYNDON
WORDS AND A CERTAIN CLASS OF COMBINATORIAL NUMBERS
CONTAINING POWERS OF BINOMIAL COEFFICIENTS

IREM KUCUKOGLU

ABSTRACT. The main aim of this paper is to find out some relationships between the
numbers of Lyndon words and a certain class of combinatorial numbers which con-
tains finite sums of powers of binomial coeflicients and whose generating functions
were constructed and investigated by Simsek in “Generating functions for finite sums
involving higher powers of binomial coefficients: Analysis of hypergeometric functions
including new families of polynomials and numbers, J. Math. Anal. Appl. 477 (2019),
1328-1352”. By applying not only the Dirichlet convolution formula, but also the
Mobius inversion formula, we obtain some identities containing the Mobius function,
the Euler’s totient function, the numbers of Lyndon words, the numbers of necklaces,
the Stirling numbers of the second kind, and the aforementioned class of combinatorial
numbers. Moreover, a few special cases and consequences of our results are consid-
ered. In particular, it should be noted here that in the special case when we take the
power of the binomial coefficients to be 1, some of our results are reduced to several
results obtained by Kucukoglu and Simsek in “Identities and Derivative Formulas for
the Combinatorial and Apostol-Euler Type Numbers by Their Generating Functions,
Filomat 32(20) (2018), 6879-6891”.
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1. INTRODUCTION

Of late years, by conducting an impressive series of studies (see [29]; and also see [28,
30]), Simsek has made an effort on the construction techniques of generating functions for
some families of combinatorial numbers containing different kinds of binomial coefficients
to provide convenience to the literature, and for this purpose, Simsek introduced and
classified a series of combinatorial number families by indexing them according to their
identification order with their generating functions. Among these studies, the article
where this classification was initiated is [29], in which, Simsek introduced a class of
combinatorial numbers denoted by 1 (n, k; ) and computed with the aid of the following
formula:
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together with their exponential generating functions given by

e+ 1) & N
(1) T:nzzoyl(nvka)‘)m’

(for details see [29]; and also [28,30]).

Subsequently, as a generalization of the numbers y;(n, k; A), Simsek [30] constructed
the exponential generating functions for another class of combinatorial numbers, denoted
by y¢(n, k; A\, v) and containing finite sums of powers of binomial coefficients, with the
aid of the generalized hypergeometric function as follows:

1 R T Y B N
@ o vEe 11,1 G Ae} —Z;ys(nvk,k,v)a,
=
in which, the numbers yg(n, k; A, v) are given explicitly by
k v
1 k .
(3) yo(n, ks A, v) = — <) N,
k!
=0 M

where A € R (or C) and n,k,v € No = {0,1,2,...} (cf. [30, p. 1347]).

By the above constructions, Simsek has brought a new perspective to the world of
the combinatorial numbers families on how their generating functions can be built. By
revealing many properties and relationships regarding these combinatorial numbers, re-
cent studies conducted by Simsek showed that not only combinatorial number families
are an indispensable part of the theories of enumerative combinatorics and mathemati-
cal physics, but also combinatorial number families are of meaningfull connections with
other kinds of special numbers and polynomials. Therefore, it is obvious that any ex-
amination to be made on these numbers have potential to affect many researchers.

By this motivation, to shed light on another side of these combinatorial numbers, we
are here mainly concerned with deriving identities which gives us relationships of the
combinatorial numbers yg(n, k; A\, v) with not only the numbers of Lyndon words, but
also the numbers of necklaces. Indeed, it is aimed to show that the numbers yg(n, k; A, v)
are possessed of close relationships with not only the numbers of Lyndon words, but also
the numbers of necklaces. To achieve this aim, the techniques used are based entirely
on the techniques used in the work of Kucukoglu and Simsek [17] and these techniques
consist of the Dirichlet convolution and the Mobius inversion formula which are explained
in detail in the next section. It is worth noting here that some of our results generalize
some identities obtained in [17].

The rest of this paper consists of next three sections. As for the summary of these
sections: In Section 2, we give some preliminaries regarding the arithmetical functions,
the Mobius function, the Euler’s totient function, the Dirichlet convolution formula, the
Moébius inversion formula, the numbers of Lyndon words and the numbers of necklaces.
In section 3, by using not only the Dirichlet convolution formula, but also the M&bius
inversion formula, we obtain some identities containing the Moébius function, the Euler’s
totient function, the numbers of Lyndon words, the numbers of necklaces, the Stirling
numbers of the second kind, and the aforementioned class of combinatorial numbers,
and in Section 4 we conclude the paper by making a comment on what it reveals.



The numbers of Lyndon words and a certain class of combinatorial numbers

2. PRELIMINARIES

Before presenting our results to the readers, we here remind the following concepts
about the techniques basically used for achieving the results of this study.

An arithmetical function (or a number-theoretic function) is a real (or complex-valued
function) whose domain is the set of positive integers, and these type functions allow us
to investigate not only the features of divisibility in integers, but also distribution of the
prime numbers (see, for details, [1]).

Two of the most frequently used arithmetical functions are the Mdbius function p (n)
and the Euler’s totient function ¢ (n), and these arithmetical functions are respectively
defined by (cf. [1]):

1 if n=1,
p(n) =4 (—1)™ if nis a square-free integer with m distinct prime factors,
0 if n has a squared prime factor.

and

pn)= Y 1,

(m,n)=1
in which, the sum runs over all positive integers m < n that are relatively prime to the
positive integer n.
The Dirichlet convolution f * g of two arithmetical functions f and g is given by

(frg)m) =3 f@Dg (%),
dln

in which, the sum runs over all divisors d of the positive integer n (cf. [1]).

It is also worth mentioning here that the Dirichlet convolution is one of the auxiliary
tools that establish the bridge between arithmetical functions, and this tool serves us as
the cornerstone of the analytic number theory to reveal relations among the concepts
of this theory. In the meanwhile, under the operations of the pointwise addition and
the Dirichlet convolution, the set of all arithmetical functions yields a commutative ring
with unity (for details, see [9], [19]).

Some of the arithmetic functions arising from the Dirichlet convolution are given as
follows:

The arithmetical function Ly (n) that allows us to count how many k-ary Lyndon
words of length n are, is given by

0 L) == S u (5K,
dn

(cf [2,10,20-24]).
The arithmetical function Nj (n) that allows us to count how many necklaces with n
beads of k different colors are, is given by

o) Ne() = =3 (5) 4
din
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(cf. [2], [12]).

As mentioned in Kucukoglu and Simsek [19], the k-ary Lyndon words of n length
is known to be identified as the lexicographically (i.e. in a dictionary order) smallest
element of the set of conjugate classes which are the results of cyclic shifts of k letters
in a primitive word of length n.

The arithmetical function Ly (n) that provides the counting these words, are possessed
of close relationships with the arithmetical function Ny (n) due to the superposition of
the Lyndon words with aperiodic necklace class representatives (see, for setails, [2, 15,
20,21,24]). In the solution of some problems in algebraic combinatorics, lie algebra and
analytic number theory, it is encountered frequently with these arithmetical functions
and it may be seen to appears to be studied with various aspects by many reserachers
(cf [2,6,13-15,17-27]; and also see the references cited therein).

Note that one of the important formulas used in conjunction with the Dirichlet con-
volution is the Mobius inversion formula which is used for converting the aritmetical

function f given by
=> g(d)
dn

into the arithmetical function g below
n
=Y u(5) @
dln

and vice versa (see, for details, [1, p. 32]).

3. MAIN RESULTS

In this section, by blending the techniques of the Dirichlet convolution of arithmetic
functions and the Md&bius inversion formula, we get identities containing the Mobius
function, the Euler’s totient function, the numbers of Lyndon words, the numbers of
necklaces, the Stirling numbers of the second kind, the numbers yg(m, k; A, v) and other
kinds of combinatorial numbers. The results obtained here shows us what kind of re-
lationships exists among the numbers yg(m, k; A, v), the numbers of Lyndon words and
the numbers of necklaces.

Theorem 3.1. Let n € N. Then we have

k
(6) Zu<)yﬁdkm—kﬁz<>wL n).
7=0

dn

Proof. In order to prove this theorem, we first consider the Dirichlet convolution of the
numbers yg(n, k; A, v) and the Mo6bius function p (n) as follows:

(y6 * ) ( Zu( )dek)\'U)

dln



The numbers of Lyndon words and a certain class of combinatorial numbers

which, by using (3), yields

(6 * 1) ( =%i(>>\j2u(%)jd

dn

Then, by blending (4) with the equation just above, we get

(y6 * 1) (n k'z<>

which yields the desired result. O
Remark 3.1. The special case of (6) when v =1 is reduced to the following identity:
> (5) midoks 0 = k.z( VL (0.

dn

which was given by Kucukoglu and Simsek in [17, p. 6887, Theorem 3.8]. Furthermore,
when A = v =1, the equation (6) also yields

k
n k
7) }dlnju(g) B =n > (4)L o)

7=0

where
which was given by Golombek [11] with the formula below:
!

e +1 ,
dtd =0
(see, for details, [11]; and see also [16,28-30]). In addition to above investigations, when
A= —1 and v =1, the equation (6) yields

k
n
®) (7)) = 30 = (5w,
§=0
where Sa(d, k) denotes the Stirling numbers of the second kind defined by the followings:
k
1 i (k
— J n\d
0= 5> 17 () -t
7=0
Sao(d, k) = Sa(d— 1,k — 1) + kSa(d — 1, k),

d
2t =" Sy(d, k) (2,
k=0

B(d,k) =

and

6*1 ZSgdkd',

such that S5 (0,0) =1, Sy (d,k) =0 if k > d, Sg(d, 0)=0ifd>0 (cf [3,5,7,8,32]).
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Let p be a prime number. Since the divisors of the prime number p are 1 and p,
setting n = p into Theorem 3.1 yields the following corollary:

Corollary 3.1. Let p be prime number. Then we have
P - (R

9) v ks A v) = ws(L, ks A 0) = 5> () ML (p).
k! =\

With the displacement of k by n, Theorem 3.1 are reduced to the following corollary:
Corollary 3.2. Let n € N. Then we have

ZM()%dnAv ,53()

Theorem 3.2. Let n € N. Then we have

(10) (n,k; M\, v) ZZ <]> —/\JL (d).

d|n j=0

Proof. By applying the Mébius inversion formula to (6), we convert the left-hand side
of the equation (6) into

6(n, ks A\, v ;‘klz<)vL

which yields the assertion of Theorem 3.2. O

Remark 3.2. By Theorem 3.2, we have another relationship between the numbers
ye(n, k; A\, v) and the numbers of Lyndon words. Substantially, Theorem 3.2 shows us
that the numbers yg(n, k; A\, v) can be expressed in terms of the numbers of Lyndon words.

The special case of (10) for varying values of A and v yields the following corollaries:
In the special case when A = 1, (10) is reduced to the following corollary:

Corollary 3.3. Let n € N. Then we have

(1) (ks 1,0) ZZQ)MJ

din j=0

In the special case when v = 1, (10) is also reduced to the following corollary:
Corollary 3.4. Let n € N. Then we have
(12) 1,85 0) ZZ()ML)
dln j=0

Remark 3.3. Different proof of (12) was given by Kucukoglu and Simsek in [17, p.
6887, Theorem 3.9].
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It is known from the work of Boyadzhiev [4, p.4, Eq-(7)] that

(13) 3 ()i =3 (F)isa s 10,

Jj=0 J=0

(cf. [4, p-4, Eq-(7)]).
By combining (13) with (12), we get the following corollary:

Corollary 3.5. Let n € N. Then we have

n

(14) > <f> 1S5 (n, j) N (14 A)F ZZ( )AJdL

j=0 dn j=0

In the special case when A = 1 and v = 1, (10) is also reduced to the following
corollary:

Corollary 3.6. Let n € N. Then we have

(15) ZZ( )

din j=0

It is known from the work of Spivey [31, Identity 12| that

m

(16) Blmn) =3 ()12 8 m ).

j=0
(cf. [31, Identity 12]).
By combining (16) with (15), we get the following corollary:

Corollary 3.7. Let n € N. Then we have
[k

(17) Z()@’”Sw ZZ()
=0 \J din j=0

In the special case when A\ = —1 and v = 1, (10) is also reduced to the following
corollary:

Corollary 3.8. Let n € N. Then we have

(18) => Z < ) :'L] (d).

d|n j=0

Remark 3.4. Corollary 3.8 shows how the Stirling numbers of the second kind Sa(n, k)
are expressed in terms of the numbers of Lyndon words.

Theorem 3.3. Let n € N. Then we have

(19) th( )yﬁdk)\v)—%icg.)U)\ij(n).

din =0 M
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Proof. In order to prove this theorem, we first consider the Dirichlet convolution of the
numbers yg(n, k; A, v) and the Euler’s totient function ¢ (n) as follows:

(¥6 * ) Zs@( ) us(d. ks A, 0),

which, by using (3), yields
1 b n
_ J N sd
(Y6 * ) (n) = 5 EZO()/\ d§| w(d).?

Then, by blending (5) with the equation just above, we get

o k,z() (),

which is the desired result. O
In the special case when v = 1, (19) is reduced to the following corollary:

Corollary 3.9. Let n € N. Then we have

Zcp( >y1dk)\ kﬁé( ))\JN

Moreover, when A = v = 1, the equation (19) also yields the following corollary:

Corollary 3.10. Let n € N. Then we have

k
n k
(20) th(g) B(d,k)znZ(,)N
" J
din j=0
For A\ = —1 and v = 1, the equation (19) yields the following corollary:
Corollary 3.11. Let n € N. Then we have

(21) Zg@( )Szdk_kﬁz: () N; (n).

din

Remark 3.5. Corollary 3.11 shows that the Dirichlet convolution of the Fuler’s totient
function and the Stirling numbers of the second kind Sa(n,k) can be calculated by a
combinatorial sum including the binomials coeficients and the numbers of necklaces.

Let p be a prime number. Since the divisors of the prime number p are 1 and p,
setting n = p into Theorem 3.3 yields the following corollary:

Corollary 3.12. Let p be prime number. Then we have

k v
(22) (0 — 1) yo(L,k: A\, v) + y6(p, k3 A, ) = g;( ) NN (
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With the displacement of &k by n, (3.3) is reduced to the following corollary:
Corollary 3.13. Let n € N. Then we have

%w (5) ve(d,ms A, v) = ﬁ; (;’) NN; ().

By subtracting (9) from (22), we get the following corollary:
Corollary 3.14.

1 <n R\
(23) (Lks A v) = ) N (Nj(p) - Lj (p)
Ye M;(]) i \p 5 \P

Applying the Euler operator )\% to y6(0,k; A\, v) and using (23), we arrive at the
following theorem:

Theorem 3.4.

MR\ d
(24) ) N (N; () = Lj () = kIA{we(0, ks A, v) }.
- (]) i \p j P N Y6

J
4. CONCLUSION

In conclusion, this paper reveals that applying the Dirichlet convolution formula and
the Mobius inversion formula to the combinatorial numbers yields miscellaneous relations
of the numbers of Lyndon words with a certain class of combinatorial numbers containing
powers of binomial coefficients.
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